Pardi et al. (2022) “Development of a pentavalent broadly protective nucleoside-modified mRNA vaccine against influenza B viruses” Nature Communications.
DOI: 10.1038/s41467-022-32149-8
Read about Pardi et al. (2022) “Development of a pentavalent broadly protective nucleoside-modified mRNA vaccine against influenza B viruses” Nature Communications.
Mu et al. (2022) “mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice” Cell Reports.
DOI: 10.1016/j.celrep.2022.110514
Read about Mu et al. (2022) “mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice” Cell Reports.
Rurik et al. (2022) “CAR T cells produced in vivo to treat cardiac injury” Science.
DOI: 10.1126/science.abm0594
Read about Rurik et al. (2022) “CAR T cells produced in vivo to treat cardiac injury” Science.
Mallory et al. (2021) “Messenger RNA expressing PfCSP induces functional, protective immune responses against malaria in mice” NPJ Vaccines.
DOI: 10.1038/s41541-021-00345-0
Read about Mallory et al. (2021) “Messenger RNA expressing PfCSP induces functional, protective immune responses against malaria in mice” NPJ Vaccines.
Musunuru et al. (2021) “In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates” Nature.
DOI:10.1038/s41586-021-03534-y
Read about Musunuru et al. (2021) “In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates” Nature.
Rothgangl et al. (2021) “In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels” Nature Biotechnology.
DOI:10.1038/s41587-021-00933-4
Read about Rothgangl et al. (2021) “In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels” Nature Biotechnology.
Rizvi et al. (2021) “Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA” Nature Communications.
DOI:10.1038/s41467-021-20903-3
Read about Rizvi et al. (2021) “Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA” Nature Communications.
Villiger et al. (2021) “In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA” Nature Biomedical Engineering.
DOI:10.1038/s41551-020-00671-z
Read about Villiger et al. (2021) “In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA” Nature Biomedical Engineering.
Weissman et al. (2021) “D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization” Cell Host & Microbe.
DOI:10.1016/j.chom.2020.11.012
Read about Weissman et al. (2021) “D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization” Cell Host & Microbe.
Lederer et al. (2020) “SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation” Immunity.
DOI:10.1016/j.immuni.2020.11.009
Read about Lederer et al. (2020) “SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation” Immunity.
Laczkó et al. (2020) “A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice” Immunity.
DOI:10.1016/j.immuni.2020.07.019
Read about Laczkó et al. (2020) “A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice” Immunity.
McKay et al. (2020) “Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice” Nature Communications.
DOI:10.1038/s41467-020-17409-9
Read about McKay et al. (2020) “Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice” Nature Communications.