Musunuru et al. (2021) “In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates” Nature.
DOI:10.1038/s41586-021-03534-y
Read about Musunuru et al. (2021) “In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates” Nature.
Rothgangl et al. (2021) “In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels” Nature Biotechnology.
DOI:10.1038/s41587-021-00933-4
Read about Rothgangl et al. (2021) “In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels” Nature Biotechnology.
Rizvi et al. (2021) “Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA” Nature Communications.
DOI:10.1038/s41467-021-20903-3
Read about Rizvi et al. (2021) “Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA” Nature Communications.
Villiger et al. (2021) “In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA” Nature Biomedical Engineering.
DOI:10.1038/s41551-020-00671-z
Read about Villiger et al. (2021) “In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA” Nature Biomedical Engineering.
Weissman et al. (2021) “D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization” Cell Host & Microbe.
DOI:10.1016/j.chom.2020.11.012
Read about Weissman et al. (2021) “D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization” Cell Host & Microbe.
Lederer et al. (2020) “SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation” Immunity.
DOI:10.1016/j.immuni.2020.11.009
Read about Lederer et al. (2020) “SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation” Immunity.
Laczkó et al. (2020) “A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice” Immunity.
DOI:10.1016/j.immuni.2020.07.019
Read about Laczkó et al. (2020) “A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice” Immunity.
McKay et al. (2020) “Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice” Nature Communications.
DOI:10.1038/s41467-020-17409-9
Read about McKay et al. (2020) “Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice” Nature Communications.
Freyn et al. (2020) “A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice” Molecular Therapy.
DOI:10.1016/j.ymthe.2020.04.018
Read about Freyn et al. (2020) “A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice” Molecular Therapy.
Raj et al. (2020) “Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria” Nature.
DOI:10.1038/s41586-020-2220-1
Read about Raj et al. (2020) “Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria” Nature.
Marcos-Contreras (2020) “Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier” PNAS.
DOI: 10.1073/pnas.1912012117
Read about Marcos-Contreras (2020) “Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier” PNAS.
Willis et al. (2020) “Nucleoside-modified mRNA vaccination partially overcomes maternal antibody inhibition of de novo immune responses in mice” Science Translational Medicine.
DOI: 10.1126/scitranslmed.aav5701
Read about Willis et al. (2020) “Nucleoside-modified mRNA vaccination partially overcomes maternal antibody inhibition of de novo immune responses in mice” Science Translational Medicine.