Acuitas Therapeutics


6190 Agronomy Road, Suite 405 Vancouver, BC, V6T 1Z3

Facebook: @Acuitas
Twitter: @Acuitastx
Acuitas: (noun) insight, perception, sharpness.


Acuitas Scientists, in Collaboration With Other Researchers, Have Published Extensively on LNP Development and Characterization.


Weissman et al. (2020) “D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization” Cell Host Microbe. DOI:10.1016/j.chom.2020.11.012

Lederer et al. (2020)SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation Immunity. DOI:10.1016/j.immuni.2020.11.009

Laczkó et al. (2020) “A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice” Immunity. DOI:10.1016/j.immuni.2020.07.019

McKay et al. (2020) “Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice Nature Communications. DOI:10.1038/s41467-020-17409-9

Freyn et al. (2020) “A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice” Molecular Therapy. DOI:10.1016/j.ymthe.2020.04.018

Raj et al. (2020) “Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria” Nature. DOI:10.1038/s41586-020-2220-1

Marcos-Contreras (2020) “Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier” Proc Natl Acad Sci U S A. DOI: 10.1073/pnas.1912012117

Willis et al. (2020) “Nucleoside-modified mRNA vaccination partially overcomes maternal antibody inhibition of de novo immune responses in mice” Sci Transl Med. DOI: 10.1126/scitranslmed.aav5701

Huysmans et al. (2019) “Expression kinetics and innate immune response after electroporation and LNP-mediated delivery of a self-amplifying mRNA in the skin” Mol Ther.Nucleic Acids. DOI: 10.1016/j.omtn.2019.08.001

Pardi et al. (2019) “Characterization of HIV-1 nucleoside-modified mRNA vaccines in rabbits and rhesus macaques” Mol Ther.Nucleic Acids. DOI: 10.1016/j.omtn.2019.03.003

Conway et al. (2019) “Non-viral delivery of zinc finger nuclease mRNA enables highly efficient in vivo genome editing of multiple therapeutic gene targets” Mol Ther. DOI: 10.1016/j.ymthe.2019.03.003

Parhiz et al (2018) “PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake” J Control Release. DOI:10.1016/j.jconrel.2018.10.015

Pardi et al. (2018b) “Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies” Nature Communications. DOI:10.1038/s41467-018-05482-0

Pardi et al. (2018a) “Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses” Journal of Experimental Medicine. DOI:10.1084/jem.20171450

Lutz et al. (2017) “Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines” NPJ Vaccines. DOI:10.1038/s41541-017-0032-6

Thran et al. (2017) “mRNA mediates passive vaccination against infectious agents, toxins, and tumors” EMBO Molecular Medicine. DOI:10.15252/emmm.201707678

Pardi et al. (2017b) “Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge” Nature Communications. DOI:10.1038/ncomms14630

Pardi et al. (2017a) Zika virus protection by a single low-dose nucleoside-modified mRNA Vaccination” Nature. DOI:10.1038/nature21428

Pardi et al. (2015) “Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes” J Controlled Release. DOI:10.1016/j.jconrel.2015.08.007

Thess et al. (2015) “Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals” Mol Ther. DOI:10.1038/mt.2015.103

Mui et al. (2013) “Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles” Mol Ther Nucleic Acids. DOI:10.1038/mtna.2013.66

Maier et al. (2013) Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics Mol Ther. DOI:10.1038/mt.2013.124

Jayaraman et al. (2012) “Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo” Angew Chem Int Ed Engl. DOI:10.1002/anie.201203263

Semple et al. (2010) “Rational design of cationic lipids for siRNA delivery” Nat Biotechnol. DOI:10.1038/nbt.1602

Akinc et al. (2010) “Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms” Mol Ther. DOI:10.1038/mt.2010.85