Acuitas: (noun) insight, perception, sharpness.


Acuitas Scientists, in Collaboration With Other Researchers, Have Published Extensively on LNP Development and Characterization.


Mallory et al. (2021) Messenger RNA expressing PfCSP induces functional, protective immune responses against malaria in mice NPJ Vaccines. DOI: 10.1038/s41541-021-00345-0

Rothgangl et al. (2021) In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels Nat Biotech. DOI:10.1038/s41587-021-00933-4

Musunuru et al. (2021) “In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates” Nature. DOI:10.1038/s41586-021-03534-y

Rizvi et al. (2021) “Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA” Nat Commun. DOI:10.1038/s41467-021-20903-3

Villiger et al. (2021) “In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA” Nat Biomed Eng. DOI:10.1038/s41551-020-00671-z

Weissman et al. (2020) “D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization” Cell Host Microbe. DOI:10.1016/j.chom.2020.11.012

Lederer et al. (2020)SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation Immunity. DOI:10.1016/j.immuni.2020.11.009

Laczkó et al. (2020) “A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice” Immunity. DOI:10.1016/j.immuni.2020.07.019

McKay et al. (2020) “Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice Nature Communications. DOI:10.1038/s41467-020-17409-9

Freyn et al. (2020) “A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice” Molecular Therapy. DOI:10.1016/j.ymthe.2020.04.018

Raj et al. (2020) “Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria” Nature. DOI:10.1038/s41586-020-2220-1

Marcos-Contreras (2020) “Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier” Proc Natl Acad Sci U S A. DOI: 10.1073/pnas.1912012117

Willis et al. (2020) “Nucleoside-modified mRNA vaccination partially overcomes maternal antibody inhibition of de novo immune responses in mice” Sci Transl Med. DOI: 10.1126/scitranslmed.aav5701

Huysmans et al. (2019) “Expression kinetics and innate immune response after electroporation and LNP-mediated delivery of a self-amplifying mRNA in the skin” Mol Ther.Nucleic Acids. DOI: 10.1016/j.omtn.2019.08.001

Pardi et al. (2019) “Characterization of HIV-1 nucleoside-modified mRNA vaccines in rabbits and rhesus macaques” Mol Ther.Nucleic Acids. DOI: 10.1016/j.omtn.2019.03.003

Conway et al. (2019) “Non-viral delivery of zinc finger nuclease mRNA enables highly efficient in vivo genome editing of multiple therapeutic gene targets” Mol Ther. DOI: 10.1016/j.ymthe.2019.03.003

Parhiz et al (2018) “PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake” J Control Release. DOI:10.1016/j.jconrel.2018.10.015

Pardi et al. (2018b) “Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies” Nature Communications. DOI:10.1038/s41467-018-05482-0

Pardi et al. (2018a) “Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses” Journal of Experimental Medicine. DOI:10.1084/jem.20171450

Lutz et al. (2017) “Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines” NPJ Vaccines. DOI:10.1038/s41541-017-0032-6

Thran et al. (2017) “mRNA mediates passive vaccination against infectious agents, toxins, and tumors” EMBO Molecular Medicine. DOI:10.15252/emmm.201707678

Pardi et al. (2017b) “Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge” Nature Communications. DOI:10.1038/ncomms14630

Pardi et al. (2017a) Zika virus protection by a single low-dose nucleoside-modified mRNA Vaccination” Nature. DOI:10.1038/nature21428

Pardi et al. (2015) “Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes” J Controlled Release. DOI:10.1016/j.jconrel.2015.08.007

Thess et al. (2015) “Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals” Mol Ther. DOI:10.1038/mt.2015.103

Mui et al. (2013) “Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles” Mol Ther Nucleic Acids. DOI:10.1038/mtna.2013.66

Maier et al. (2013) Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics Mol Ther. DOI:10.1038/mt.2013.124

Jayaraman et al. (2012) “Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo” Angew Chem Int Ed Engl. DOI:10.1002/anie.201203263

Semple et al. (2010) “Rational design of cationic lipids for siRNA delivery” Nat Biotechnol. DOI:10.1038/nbt.1602

Akinc et al. (2010) “Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms” Mol Ther. DOI:10.1038/mt.2010.85